HYBRID COLLIDING BODIES OPTIMIZATION AND SINE COSINE ALGORITHM FOR OPTIMUM DESIGN OF STRUCTURES

Authors

  • A. M. Salmani Oshnari
  • A.H. Salmani Oshnari
  • M. Ilchi Ghazaan
Abstract:

Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Algorithm (SCA) is a stochastic optimization method that employs sine and cosine based mathematical models to update a randomly generated initial population. In this paper, we developed a new hybrid approach called hybrid CBO with SCA (HCBOSCA) to obtain reliable structural design optimization of discrete and continuous variable structures, where a memory was defined to intensify the convergence speed of the algorithm. Finally, three structural problems were studied and compared to some state of the art optimization methods. The experimental results confirmed the competence of the proposed algorithm.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Modified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables

This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical function...

full text

OPTIMAL DESIGN OF JACKET SUPPORTING STRUCTURES FOR OFFSHORE WIND TURBINES USING ENHANCED COLLIDING BODIES OPTIMIZATION ALGORITHM

Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization...

full text

VISCOUS DAMPER PLACEMENT OPTIMIZATION IN CONCRETE STRUCTURES USING COLLIDING BODIES ALGORITHM AND STORY DAMAGE INDEX

Dampers can reduce structural response under dynamic loads. Since dampers are costly, the design of structures equipped with dampers should make their application economically justifiable. Among the effective cost reduction factors is optimal damper placement. Hence, this study intended to find the optimal viscous damper placement using efficient optimization methods. Taking into account the no...

full text

STATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION

Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...

full text

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ENHANCED VERSION

Colliding bodies optimization (CBO) is a new population-based stochastic optimization algorithm based on the governing laws of one dimensional collision between two bodies from the physics. Each agent is modeled as a body with a specified mass and velocity. A collision occurs between pairs of objects to find the global or near-global solutions. Enhanced colliding bodies optimization (ECBO) uses...

full text

OPTIMIZATION OF VERTICAL ALIGNMENT OF HIGHWAYS IN TERMS OF EARTHWORK COST USING COLLIDING BODIES OPTIMIZATION ALGORITHM

One of the most important factors that affects construction costs of highways is the earthwork cost. On the other hand, the earthwork cost strongly depends on the design of vertical alignment or project line. In this study, at first, the problem of vertical alignment optimization was formulated. To this end, station, elevation and vertical curve length in case of each point of vertical intersec...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 1

pages  17- 38

publication date 2023-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023